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In this paper sufficient indications of asymptotic stability and insta- 
bility are obtained, generalizing the known criteria of Liapunov [l] by 
replacing the condition of sign-definiteness of the derivative of the 
Liapunov function by a less rigorous condition of its uniformity of sign 
(with some requirements for the set where the derivative becomes zero). 
comes zero). 

Generalizations of this type were obtained in the case of steady 
motion (in the sense of td f by Barbashin and Krasovskii [Z’l and also by 
Tuzov [31, and for the case of periodic motions by Krasovskii [A. Here 
the general case of nonsteady motion is considered. It is easy to con- 
vince oneself by example*, that the generalizations of the mentioned 

authors, in the forms [2,3,41 do not extend to that case. In the obtained 
criteria two Liapunov functions are used. As is known, the first theorem 
on instability with two functions was proposed by Chetaev [51. For the 
case of nonuniform asymptotic stability, the requirement of an infinitely 
small higher limit is also removed. which leads to the modification of 

* Thus 

dx . _ =. 
dt 

- P (Q x 

The general solution 

shows that the solution x = 
for V = 112 x2, 

0 is nonasymptot~cally stable, although 
the derivative i = - px2 < 0 and the semi-trajectories, 

with the exception of x = 

where V’= 0. 

0, are not contained entirely in the set, 
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the corresponding theorems of Rrasovskii c63, Zubov [71, Reisig [t?] . 

The application to nonstationary grroscopic systems with dissipation 
ts discussed. 

1. Let the equations of the nonauton~us motion be given by 

*xi - = x $(X1, . , ., x1(, t) 
dt 

(i = 1,...7 n) (I.11 

in which the functions Xi in the domain I- 

2 t 5, 7_.*. + &zz <HZ, t>,o (H = const > 0) 

are defined, continuous and bounded as well as their partial derivatives 

axi/a'j, aXi/at, as 

IXc(x,, * * -, Gl, t) I < x (X = const > 0) 

In such a case, to each set of numbers (xlo, . . ., xn,,, t,) E r, there 

corresponds a single system of functions which are continuously differ- 
entiable with respect to t 

Xi it, X10, . - -9 znip to) (i = I,..., n) 

and satisfying in I” to the system (1.1) and to the initial conditions 

Let also 

x4 (to, 510, . * .x730, , to) = xi0 (i = I,..., n) 

xi (0, * . ., 0, q z 0 (i = I,..., n) 

that is, the system (1.1) admits the autonomous motion 

Xl = 0, 2$ = 0, . f *+ z-Cm = 0 (1.2) 

The set of the n numbers (x1, . . . , x,> is calfed point x in the n- 
dimensional Euclidian space l?‘. The number 

is called distance of the point x to the point x O in I?’ (corresponding 

to the elements M C !?“I. 
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l%e norm of the vector z appears as llx\\ = 4 (x1* + . . . + z,*). The 
set of functions 

is determined in the domain (H) 

of the space En of the nonautonomous motion. 

We shall study the Liapunov functions V(z, t), Wn, t), determined 
(existing ?nd well gefined) and continuous in I-, as well as their de- 
rivatives V(x, t), W(x, t), with resp?ct to time t, taken by virtue of 
system (1.1)) whereupon V(0, t) E 0, V(0, t) E 0 (refer to [ll), and 
also the functions V*(x), V’(n) are definite and continuous in (H). 

The set of the points x E (H), for which v*(x) = 0, will be repre- 
sented by E(V* = 0). 

Definition 2.1. W(x, t) is definitely not equal to zero in the 
ensemble E(V* = 0) if for any numbers a and A(0 < a < A < H) numbers 
F (a, A), <(a, A) (0 < rl < d,, g > O), can be found such that 
\Jl(x, t)) > c for a< llxll < A, p(n, E(V* = 0)) < rl, t>O. 

‘I’heorem 1.1. Let there be functions V(x, t), W(x, t), having in r the 
following properties. 

1) The function V(r, t) is positive definite and admits an infinitely 

small upper limit. 

2) The derivative t(x, t) < V*(x) < 0. 

3) ‘Ihe function W(x, t) is bounded. 

4) @(x, t) is definitely not equal to zero in the ensemble E(ln = 0). 

Then the autonomous rootion (1.2) of the system (1.1) is asymptotically 
stable with respect to x0, to. 

Proof. Let us assume the conditions of the theorem are satisfied. By 
virtue of the theorem of Liapunov on the stability of motion, defined 
more precisely by Persidskii for the case of uniform stability, the 
autonomous motion (1.2) of the system (1.1) is stable with respect to t0 
and for any number A(0 < A < l!), a number h(A) (0 < h < A) can be found 
such that for any 
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for all t > to we shall have 11 z(t, x0, to) 11 < A, whereupon 

There remains to prove that, to any arbitrary small number p(O<u<A) 

there corresponds a positive number T(A, IA) such that under conditions 
(1.3) for all t 2 t,, + T there will be 11 x( t, x,,, to) 1) < p. Taking into 
consideration the monotonicity of the function V( X( t, x0, to), t), it is 

enough to establish the existence of a number P(A, P) such that for any 
nonautonomous motion with initial condition (1.3) at the instant t* = 
to + p there will be 

v (x p*, x0, toI, t*) < ifif [V (2, 0, t > 0, II 2 II >, I”, II x II < 4 = V, 

As V(x, t) admits an infinitely small upper limit, then on V,, a number 

atcl, A) (0 < a < g) can be found such that for t > 0, 11 xl1 < a there will 
be V(x, t) < VP. For this reason, to establish the existence of ‘I* it is 
enough to find a positive number T’(a, A) such that for any nonautonomous 
motion with initial conditions (1.3), at some instant of time t’( to +Z 
t’ <to t T’), we shall have in it 11 z(t’, x0, to) II <a. 

We shall consider any nonautonomous motion z(t) = x( t, x,,, toI with 
the initial condition (1.3) and we shall establish some of its properties 

(a) If p(x(f), X(T)) 2 r > 0( t > -r), then 

t-r> x;, 
From the formulas of finite increments 

I “2 P) - xi (r) I = 1 1 2 (t - 7) < x (t -r) 

therefore, for r < v[zr (t) - 21 (z)Ja + . . . + [zcn (t) - zn (r)]a we have 

r<X-fG(t-r) 

By virtue of (3) there exists a positive number 

L=sup(IW@, 2)I,t>O*Il~ll<4 

In accordance with (4) it is possible to find some positive numbers 
rl(a. A), g(a, A) such that in the ensemble U C (H), where a< 11% 11 C A, 

PC%, E(V* = 0)) < rl, for any t >O there will be 

IW(? t)l>E. 
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(b) The nonautonomous motion x( t) cannot stay permanently in the set 

U, during an interval of time equal to 2L/<. 

Let us assume X(T) E U. For x(t) (t > T) 

w (t) - w (t) = s VP dt 
5 

and as long as the motion of x(t) is in II, the sign of the derivative 
i(t) does not change; therefore 

But this inequality can be realized simultaneously with 1 It’\ d L only 
for 

Thus, there exists a number f* (v < -r* < T + 2L/<) such that for t = T* 
the motion is on the limit of the contour [uI of the set U. 

(c) If at the instant v 

and for all T < t < T + 2L/<, there will be /I x(t) 11 > a, then at the in- 
stant f* (T < T* < 7 + 2L/{), when 

o<II~(v*)II<A, P (I (0, E (V* = 0)) = rl 

we shall have 

V (z*) <V (T) - a (a, A) 
erl 

Q=---C>O 
2X Jf n 

Actually, under the given initial conditions, an instant T ( T<T < T*b 

can be found such that 
l * 

acll~WII< A ~(z(r,), E(V*=O))=r1/2 

and for all 7 < t $T*, we shall have 
l 

a < II z (4 II < A v ri / 2 d P (x Oh E (V* = 0)) < rl 

There follows, in agreement with (2) 

P (t) <v* (5 (t)) < - E 

But, as is easily noticeable, p(%(T*). %(T*)) >,rI/2, whereupon, 
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taking (a) and (b) into consideration 

Therefore 

Let us consider the sequence of instants of time 

tk = t, j k2L ; i (k = 0, 1, 2, .) 

(d) If the motion x(t) on the interval of time tk < t < tk+z is per- 
manently in the domain u < /I x(t) II < A, then 

V (tk+.J 6 V (tk) - a 

In fact, if for tk d t < fk+l we have constantly 

0~ < ilx W II < 4 P (z (t), E (V” G 0)) >, fl/ 2 

then 

‘kS1 

v &+J - v (tr) Q s 
‘k 

t’(t) dt < - y <-a 

But if we have tk.\( 7 < fk+l such that 

a<112(T)(l<4 P@(r), E(V*=W<r1/2 

then in accordance with (b) a value T*(T < T* < fk+z), can be found, in 
the presence of which 

p (z (r*) E (V* (2) = 0)) = rl 

and in agreement with (c) 

and therefore also 

v (tk+z) < v (r*) ,( ‘v (tk) - ‘z 

We shall choose an arbitrary integer k’ & VA/a > 0 and shall take 

v (r*) <v (T) - a < v ($) - a 

T’ = t*k’(a, A). If it is assumed that for all to f t d t0 + T’ we have 

0: < 11 x(t) 11 < A, th en in agreement with (d) 

V (&) < V (za, to) - k’a < V, 2 k’a < 0 

which is incompatible with the condition (1). 
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Thus, t’(t,, < t’ < to t ‘I”) can be found such that 
which proves the theorem. 
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We shall denote by E,('V = 0) the set of points x E (H) for which 

vtn, t) = 0 for a given t E LO, a). 
. 

Definition 1.2. W(n, t) is definitely not equal to zero in the sets 

Et(t’ = 0) if for any numbers a and A(0 < a < A < I!) positive numbers 
Z(a, A), c(a, A) can be found such that 

IWW)l>E f or a<llsll<A, Iv(x t)l<l,t), 

Theorem 1.2. Let there be functions V(x, t), W(x, t) having in r the 

following properties. 

1) The function V(r, t) is positive definite. 

2) ‘Ihe derivative V(X, t) < 0, and the partial derivatives W/axs, 
aV/at) a2V~Xsaxi, a2V/aXsat, a2V/at2 are continuous and bounded. 

3) The function H’(x, t) is bounded. 

4) &(n, t) is definitely not equal to zero in the sets E,(p = 0). 

Then the autonomous motion (1.2) of the system (1.1) is asymptotically 
stable with respect to x,,, t,,. 

Note. Theorem (1.1) for Xi(xr t) continuous in (H) with respect to 
t E IO, m) and Theorem (1.2) admit some simplifications. 

In fact, if the autonomous motion (1.2) of the system (1.1) is asymp- 
totically stable with respect to ro, t,,, then, as shown by Malkin [91, 
in some neighborhood of the autonomous motion (H,,) [(~,,)l C (H) 
t E (0, m), there exists a positive definite function V(X, t) admitting 
an infinitely small higher limit, and the derivative of which, in accord- 
ance with (1. l), is negative definite. If, furthermore, the functions 

xi(Xl t) are continuous in (H) with respect to t E (0, m), then, as shown 
bs Krasovskii [4l, the mentioned function V(x, t) has continuous partial 
derivatives of any order with respect to all variables, whereupon these 
derivatives are uniformly bounded in the domain (Ho) for t E (0, m). 
Taking, for instance. W(x, t) = V(x, t), we get two functions, satisfy- 
ing for L E (Ho), t E (0. m), the conditions of Theorems (1.1) and (1.2). 
As we consider the asymptotic stability in the sense of Liapunov [1,9, lo] 
(local), we get a contraction of the domain of existence of the function, 
which is not important compared with r. 

Definition 1.3. !k,z, t) is strictly not equal to zero in the set 
E(V* = O), if for any numbers a and A(0 < a < A < H) it is possible to 
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find a number rl(a, .A)(0 < rl < a) and a continuous function E,(t) such 
that for any t >,O 

and in the set, where a < Ijxi/ < A, p(x, E(I’* = 0)) < rl, t >O, we shall 

llave 

7”heorem 1.3. Let there be functions V(x, t) , w(x, t) having in r the 

following properties: 

1) The function I’(x, t) is positive definite and admits an infinitely 

small higher limit. 

2) The derivative v(x, t) < 0 and in each domain t> 0, a < [lx]/ < ii, 

there will be I’(x, t)\(qa(t)V*(x), where V*(x) < 0 and T~( t) is a con- 
tinuous non-negative function of t such that for any infinite system S 

of closed non-intersecting intervals of the semi-axis LO, a) of an 

identical fixed positive length, we have 

I 

cp= (t) dt = x: 

3) The function !#‘(x, t) is bounded. 

4) i(x, t) is strictly not equal to zero in the set E(V* = 0). 

Then the autonomous motion (1.2) of the system (1.1) is asymptotically 

stable with respect to x0. 

nefinition 1.4. !q(x, t) is strictly not equal to zero in the sets 

E*(V,= O), if for any numbers a and A(0 < a < A < !I) a positive number 

l(a, A) and a continuous function g,(t) can be found such that for any 

t>o 

and in the set, where a < l/xl/ < A, I!‘(%, t)] < 1, t >O, we shall have 

Theorem 1.4. Let there be functions V(n, t), !f’(x, t) having in r the 

following properties: 

1) The function V(x, t) is positive definite. 
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2) The derivative V(x, t) < 0, and the partial derivatives aV/axs, 
avpt, ~~v~xsa~i, ;32V/&S&, a2V,Qt2 are continuous and bounded. 

3) The function lV(x, t) is bounded. 

4) ti(X, t) is strictly not equal to zero in the sets Et(V = 0). 

Then the autonomous motion (1.2) of the system (1.1) is asymptotic- 

ally stable with respect to x0. 

Definition 2.5. ‘he function W(x, t) admits a higher limit, infinitely 
small in the set E(O* = 0), if it is limited, W(X, t) = 0 for 
x E E(V* = O), t 20, and if for any given small numbers 2, a, A( 2 > 0, 
0 < a < A < H) a positive number r’ can be found, such that for 
a < I\~11 < A, p(x, E(p = 0)) < F’, t>o we shall have I@‘(%, t)] < E. 

Theorem 1.5. Let there exist functions V(x, t), W(n, t), having in r 
the following properties: 

1) ‘Ihe function Vfx, t) is positive definite. 

2) The derivative V(Z, t) < 0 and in each domain t >O, a < 11 xl/ < Ii 
we shall have V(n, t)<cpa(t)V*(n), where V*(x) \<O, and q,(t) is a con- 
tinuous non-negative function such that for any given infinite system S 
of closed non-intersecting intervals of the semi-axis [O, 0~) of an 
identical fixed positive length, we have 

3) ‘Ihe function !V(x, t) admits a higher limit, infinitely small in 
the set E(V+ = 0). 

4) iv(X, tf is definitely not equal to zero in the set EfP = Of. 

Then the autonomous motion (1.2) of the system (1.1) is asymptotic- 
ally stable. 

The proofs of Theorems (1.2) to (1.5) come as modifications of the 
proof of Theorem (1.1)‘ 

The preceding definitions can be generalized to the case of “global” 
stability, if analogously to [41, an estimate of the domain of attrac- 
tion of the autonomous motion is introduced in the conditions of the 
theorems. 

2. Theorem 2.1. Let there be functions Vfx, t), %‘(x, t) possessing in 
i- the following properties: 

1) The function V(x, t) admits an infinitely small higher limit and 
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for any t >,O it is possible to find points n lying in any given small 
neighborhood of the autonomous motion and such that in them V(r, t) > 0. 

3) ‘Ihe derivative P(x, t) 20 and in each domain t 20, a < /Ix~/ < 
A < H there will be i’(x, t) >q,(t)V’(x), where V’(x) >O and qa( t) is a 

continuous non-negative function of t such that for any infinite system 
S of closed non-intersecting intervals of the semi-axis [0, a) of an 
identical fixed interval, we have 

3) The function 0x, t) is bounded. 

4) 6(X, t) is strictly not equal to zero in the set E(V’ = 0). 

Then the autonomous motion (1.2) of the system (1.1) is unstable. 

Proof. We shall assume that the conditions of the theorem are satis- 

fied, but the autonomous motion is table, i.e. for an A and to a A > 0 

can be found such that in each nonautonomous motion, with the initial 
values (1.3) for t > te, we shall have 

/j z (t, ~0, to) ij < A < H 

Under the conditions (1.3) in accordance with (l), x0 l , to can be 

found such that 

V(ro*, to)>0 

We shall consider the disturbed motion x(t) = x( t, x0 l , to) and its 

properties. 

(a) If p(x(t). x(T)) > r for t > 7, then t - T > r/X4 n. 

(b) For every t > t0 there will be a < 11 x(t) 11 < A, where a is some 
positive number. 

Actually, this is in agreement with our assumption 11 x(t) 11 < A. but 

in such a case 1; >,O. i.e. V(t) > V(zO*, to) > 0. As I’(%, t) admits an 
infinitely small higher limit, then for the numbers V(xu*, te) > 0 a 

number a > 0 will be found such that for all t >, te. 11 XII da we shall 

have V(x, t) < V(X~ l , to); consequently, 1) x(t) 11 <a is not possible. 

In accordance with (4). a number rI(a, A)(0 < r1 < a) and a COntinU- 

ous function c,(t), satisfying the conditions (1.4) can be found such 

that for p(x( t), E( V’ = 0)) < r,. we shall have 

(c) If p(%(f), E(V’ = 0)) < rl. then T* > T will be found such that 
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p (z (r*), E (V’ = 0)) = rl 

For p(x(~), E( V’ = 0)) < r1 for x(t) (t > T) 

t 

W (t) -W (T) = \ ti dt 
T 

and while p(z( t), E( V’ = 0)) < rl, the derivative i(t) does not change 
its sign; therefore, 

t t 

I W @I I + I W (~)(a s 1 w I dt 2 s E, (t) dt 
5 + 

But, by virtue of (1.4) and the boundedness of Rx, t), this cannot 
be for all t > te. 

(d) If p(M), E(V' = 0)) < r1/2, 
E(V’ = 0)) = r1 

1, 

V (r*) > V (7) + 8’ s qrr (t) dt 
+ 

e’=inf [V’(z), a<ljxIj<A, 

then for t = T*, when p(x(~*), 

( 
1<+*=r+-& 

2X fn ) 

p(z, E(V’=O))>r1/21>0 

In fact, under the given conditions, T < T < T* can be found such 
l 

that 

p (I (r,), E (V’ = 0)) = n / 2 

and for T < t < T* we shall have 
l 

r1/ 2 < P (z (t), E (V’ = 0)) < rl 

i.e. in accordance with (2) 

P 0) > ‘PO U) V’ (z G)) 2 +a P) 

Therefore 

+* 

V (7*) - V (T) > e’ 
s 

cp, (t) dt 

++ 

But. as it is easy to notice, P(x(T*.), x0,)),>, rl/2, whereupon. in 
agreement with (a), 

T*-?>),*-T*a - 
2Xr;n 

(e) There is not any number TO > to such that for all t 7 TO we would 
have 
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P (z (9, E (V’= ON >, ‘I/ 2 

In fact, if such a TO existed. then for all t > -r” we would have 

t t 

~(~)=~~~)+~ irdr23V(rDlfs’\ q,(t)dt 
z* ;a 

and in accordance with (2) we have V(t) - m for t - m, which is not com- 
patible with the 

(I) and (b). 

In accordance 
that 

In accordance 

condition of the boundedness of V(t), resulting from 

with (e) for any vi+, a Ti+l > Ti* can be found SUCK 

P(=(%+l), E(V’=O))<r,/2 

with (c) there corresponds to it Ti*1* > ri*I such that 

p (I (T~+~*), E (V’ = 0)) = rl 

We shall consider the infinite sequence of numbers 

to < Xl< %tl* < . 1 . < Ti < xi* < * . . 

Ia accordance with (2) and (d) 

v (zi*) >, v (to) + Sri 9.a (4 dt ( tj q rj** = Tj* - - 2x’;n > 
j=l zj’* 

The infinite aystem of segments [To**, ti’3 satisfies the condition of 
(2) for the system S, therefore, the last sum increases fndefinitely with 

i, i. e. V(-ri*) - a for i -+ Q). But this is incompatible with the condition 
of boundedness of the function V. The contradiction shows that the assump- 
tion of stability is wrong. which proves the theorem. 

Theorem 2.2. Let there be functions V(z, t), b'(x, t) having in I- the 
following properties: 

1) The function V(x, t) is such that for any t >O it is possible to 
find points x, lying in any small neighborhood of the autonomus motion, 
in which V(x, t) > 0. 

2) ‘ihe derivative V(zc, t) >O and the partial derivatives ‘V/a,i, 
N/at, ~2V/&i&j, 32V/&i&, a2V/at2 are continuous and bounded. 

3) The function lV(x, t) is bounded. 

4) ~(x, t) is strictly not equal to zero in the sets E,(f = 0). 
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Then the autonomous motion (1.2) of the systems (1.1) is unstable. 

The proof comes as a modification of the previous one. 

The autonomous motion (1.2) of the system (1.1) is called absolutely 

unstable if, for any A, x0, 

PI <(‘I xo ” 

t,-, satisfying the conditions 0 < A < H, 

< A, to > 0, a positive number T can be found such that 

x to + T, x0, to) II= A. It is easy to prove the following generaliza- 

tion of the criterion of Dubovshin [IO]. If the conditions of Theorems 

(2.1) or (2.2) are satisfied and V(x, t) > 0 for all t > 0, 0 < IIxII <H, 

then the autonomous motion (1.2) of the system (1.1) is absolutely un- 

stable. 

3. Let ua consider some applications. A. A symmetrical, heavy, rigid 

body with one point fixed, under the presence of resistance forces of 

the medium. 

Kith the usual designation, the equations of motion have the form 

Aj + (C - A) qr = Pzo-(a - 8R / ap, 

A~+(A-C)pr=-PPz~~l-~R/~q, 

C; = M, (t, r). 

* 71 = nz - PTS 

cl = PTS - Vl 

. 
~s=qTl-PYz 

Here R is a homogeneous function of p, q of order m >2, the coeffi- 

cients of which are continuous and limited functions of t. Let the moment 

MZ with respect to the axis of symmetry z consist of the moments of the 

resistance forces, depending on r, t and the moment of the driving force 

given as a function of t. 

The third equation determines r as a function of time r( t, ro, to) 

which we shall assume continuous and bounded. The equations of motion 

admit the solution 

P = O1 4 = 0, r = r (t, re, to), yl = 0, 7z = 0, r3 = 1 (3.1) 

describing the irregular rotation of the body around the vertical axis 

of symmetry. 

The functions 

v= 3 _4 (p2 f q2) - + Pzo (rP+ T2" -I- P), w = A (pya - qy1) (y2 = 1 - ys > 0) 

have, by virtue of the equations of the nonautonomous motion (taking 

into consideration the trigonometric relation y12 + yz2 + yS2 = l), 

derivatives with respect to time 
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The set E( t = 0) corresponds to p = 0. q = 0. In it 

r3r=~pao[r12+11~+78(2-~~a)l 

If to # 0, then 

Iti[>$-Plz~jcP for p=O, q=0,0<aZ<~~a+ya*+~~<~~~112 

Therefore, by virtue of the continuity of k 8nd the boundaries of the 
coefficients, it is possible to find r1 > 0. such that 

1 F@ I > f P I zo I @when t > 0, a* < T? + r2 + r8 < Aa, ~9 + qa < r? 

i.e. i is definitely not equal to zero in the set EC k = 0). 

If ze < 0 (the center of gravity is lower than the point of support), 
then the conditions of Theorem (1.1). on the basis of which we conclude 
the asymptotic stability (with respect to po, go, ylot yzo, ye, to) of 

the autonomous motion (3.1). are satisfied. 

If on the contrary z,, > 0, then the conditions of Theorem (2.1) are 
satisfied and the autonomous motions is unstable. 

8. A nonstationary mechanical system under the action of potential, 

gyroscopic and dissipative forces 

d 8T 
-7 

dt aqi 
--FE5 gijdi+g-~ (i=I,.._,n) 

z j=l I 1 

(3.2) 

Here q = ( ql, . , . , qn), i f (il. . . . , b,) are combinations of the 

generalized coordinates and velociti’es; 7’ is a positive definite quadratic 

form of the velocities; gii(q, t) = - gij(qn t) are the gyroscopic coeffi- 
cients; R is the function of dissipation and a positive definite quadratic 

form of 4 (full dissipation); U(q) is the forcing function, which we 

shall assume to be a holosorphic fUnCtiOn of q 
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where Vk(q) is a homogeneous function of order k. 

Further. gij, bij are assumed to be holonorphic functions of q with 
cont. inuous and bounded coefficients. 

The system (3.2) admits the solution 

q1= 0,. . .) qn= 0, ;I = 0,. . ., ;* = 0 

Taking V = T - Cl, ne have, by virtue of (3.2) 

(3.3) 

We shall take 

BY virtue of (3.2) 

The set E(p(4,*,+. . . +i,*) = 0) is determined as 

& =o,. . ., 4,=0, 9P+...+qn'<~ 

In it 

I@=2 -St=: kU, n au 

i=l aqi kEm 

If this function is sign-definite, then for any a and A(O<a<A<H), 

a number c > 0 can be found such that 

I@]12~>Orhen&=O, &=O,...,&=O, c?<i qt<qa 
i-1 

But by virtue of the continuity of i and the boundedness of the 
coefficients. it is possible to find for c, an rl > 0 such that we shall 
have 1 lil > 6 > 0 for 

aa < $!J (gi* + iia) < AaS $J dia < Q, t > 0 
i=l i=l 

i.e. i is definitely not equal to zero in the set E(p({,* + - * * + tj,,* 

( = 0)). 

If the functions 
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u (Q), fj kU, (q) 

are negative definite, then the conditions of Theorem (1.1). on the basis 
of which the autonomous motion (3.3) of the asymptotic stability is uni- 
form with respect to the variables Q~, io, tp, are satisfied. 

If on the contrary If(qf can take positive values for any arbitrarily 
small j qil. . . . . 1 pn/, and the function 

is sign-definite, then the conditions of Theorem (2.1) are satisfied and 
by this theorem the autonomous motion is unstable. 

The author is thankful to P.A. Kuz’ nin for his profitable discussion 
of the work. 
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